C-Fos Regulation by the MAPK and PKC Pathways in Intervertebral Disc Cells
نویسندگان
چکیده
BACKGROUND The gene encoding c-fos is an important factor in the pathogenesis of joint disease in patients with osteoarthritis. However, it is unknown whether the signal mechanism of c-fos acts in intervertebral disc (IVD) cells. We investigated whether c-fos is activated in relation to mitogen-activated protein kinases (MAPKs) and the protein kinase C (PKC) pathway in nucleus pulposus (NP) cells. METHODOLOGY/RESULTS Reverse transcription-polymerase chain reaction and western blotting analyses were used to measure the expression of c-fos in rat IVD cells. Transfections were performed to determine the effects of c-fos on target gene activity. The effect of c-fos protein expression was examined in transfection experiments and in a 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide cell viability assay. Phorbol 12-myristate 13-acetate (PMA), the most commonly used phorbol ester, binds to and activates protein kinase C (PKC), causing a wide range of effects in cells and tissues. PMA induced the expression of c-fos gene transcription and protein expression, and led to activation of the MAPK pathways in NP cells. The c-fos promoter was suppressed completely in the presence of the MAPK inhibitor PD98059, an inhibitor of the MEK/ERK kinase cascade, but not in the presence of SKF86002, SB202190, or SP600125. The effects of the PKC pathway on the transcriptional activity of the c-fos were evaluated. PKCγ and PKCδ suppressed the promoter activity of c-fos. Treatment with c-fos inhibited aggrecan and Col2 promoter activities and the expression of these genes in NP cells. CONCLUSIONS This study demonstrated, for the first time, that the MAPK and PKC pathways had opposing effects on the regulation of c-fos in NP cells. Thus, the expression of c-fos can be suppressed in the extracellular matrix of NP cells.
منابع مشابه
Degenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy
Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...
متن کاملInflammatory and catabolic signalling in intervertebral discs: the roles of NF-κB and MAP kinases.
Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis) and catabolic (i.e., matrix degradation) processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB) an...
متن کاملTonEBP Tonicity-responsive enhancer binding protein TSLP Thymic stromal lymphopoietin TWEAK Tumor necrosis like weak inducer of apoptosis VEGF Vascular endothelial growth factor
Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis) and catabolic (i.e., matrix degradation) processes, but also by infl ammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and infl ammatory factors is mediated by specifi c signal transduction, in particular the nuclear factor-kappaB (NF-B)...
متن کاملInhibitory effect of epidermal growth factor on resveratrol-induced apoptosis in prostate cancer cells is mediated by protein kinase C-A
Resveratrol, a naturally occurring stilbene with antitumor properties, caused mitogen-activated protein kinase [MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2)] activation, nuclear translocation of Ser-phosphorylated p53, and p53-dependent apoptosis in hormone-insensitive DU145 prostate cancer cells. Exposure of these cells to epidermal growth factor (EGF) for up to 4 hours resulted in...
متن کاملGastrin induces c-fos gene transcription via multiple signaling pathways.
We previously observed that the trophic actions of gastrin (G17) on the AR42J rat acinar cell line are mediated by mitogen-activated protein kinase (MAPK)-induced c-fos gene transcription via protein kinase C (PKC)-dependent and -independent pathways. In this study, we further investigated the signaling pathways that target c-fos in response to G17. G17 led to a sixfold induction in luciferase ...
متن کامل